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1 Computation of Br(R)
Proposition 1.1. The only nontrivial finite dimensional central division algebra over R is
the Hamilton quaternions.

Proof. Let D be a nontrivial finite dimensional central division algebra over R. By a result
that Nick proved, dimRD = d2 is a perfect square, and by anothe result of Nick, D has a
maximal subfield P so that P/R is separable, and dimR P = d. Since the only nontrivial
extension of R is C, P = C = R(i) and d = 2, so dimRD = 4. Now consider the two
homomorphisms

f : C→ D z 7→ z

g : C→ D z 7→ z

where z denotes the complex conjugate. By the Skolem-Noether theorem, there exists j ∈ D×
so that

z = jzj−1 ∀z ∈ C

In particular, jij−1 = −i. Note that since j does not commute with i, j does not lie in C.
We claim j2 ∈ R. Note that since D is central, j (hence j2) commutes with R. Since

j2ij−2 = i, j2 commutes with C. Since j2 is a unit, C(j2) is a field, but since C is a maximal
subfield of D, C(j2) = C, hence j2 ∈ C. Since j2 commutes with j, jj2j−1 = j2. Since
j2 ∈ C and conjugation by j is complex conjugation, jj2j−1 = j2, hence j2 = j2, so j2 ∈ R.

Now we claim j2 < 0. Since j 6∈ R, its minimal polynomial over R is t2 − j2. But if
j2 > 0, this would be reducible into (t− j)(t+ j), which is a contradiction, so we must have

1



j2 < 0. Replacing j by j√
|j2|

, we may assume j2 = −1. We claim that 1, i, j, ij are linearly

independent over R. Suppose there are a, b, c, d ∈ R so that

a+ bi+ cj + dij = 0

Then if c+ di 6= 0, we get

(a+ bi) + (c+ di)j = 0 =⇒ j =
a+ bi

c+ di
=⇒ j ∈ C

which is impossible since we know j 6∈ C, so c = d = 0. Then a + bi = 0 =⇒ a = b = 0,
hence 1, i, j, ij are linearly independent. Thus D is four dimensional R-algebra with basis
1, i, j, ij satisfying relations i2 = j2 = −1 and ij = −ij, so D ∼= H.

Corollary 1.2. Br(R) ∼= Z/2Z.

2 Computation of Br(Fq) again

We already showed that Br(Fq) = 0 using the cohomological version of the Brauer group.
We can also prove this in a different way using the language of algebras.

Lemma 2.1 (Finite group not equal to conjugates of proper subgroup). Let G be a finite
group and H ⊂ G a proper subgroup. The union of all conjugates of H is not equal to G.
That is, ⋃

g∈G

gHg−1

is a proper subset of G.

Proof. Let KH = {gHg ∈: g ∈ G} be the set of conjugate subgroups to H. Then G acts on
KH by conjugation. The stabilizer of this action is exactly the normalizer of H in G, which
we denote NG(H). Note that H ⊂ NG(H), thus

[G : NG(H)] ≤ [G : H]

By the orbit-stabilizer theorem,

|KH | = [G : NG(H)]

Each conjugate subgroup of H has the same order as H, and also contains the identity, so
the maximum number of non-overlapping elements in each subgroup is |H| − 1, and there
are |KH | such conjugate subgroups. Thus∣∣∣∣∣⋃

g∈G

gHg−1

∣∣∣∣∣ ≤ (|H| − 1
)
|KH |+ 1
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Now we do some trivial manipulations to this using facts established above.(
|H| − 1

)
|KH |+ 1 =

(
|H| − 1

)
[G : NG(H)] + 1

≤
(
|H| − 1

)
[G : H] + 1

= |H|[G : H]− [G : H] + 1

= |G| − [G : H] + 1

Since H is a proper subgroup, [G : H] ≥ 2, thus, the expression above is at most |G| − 1.
Thus the union of all conjugates of G has size strictly less than G, so it is not the whole
group.

Proposition 2.2 (Every finite division algebra is a field). Let D be a finite dimensional
central division algebra over a finite field. Then D is commutative, hence a field.

Proof. Suppose D is a noncommutative finite central division algebra over a finite field F .
Let dimF D = n2. If n = 1 then D = F and we are done, so assume n > 1. By a result
of Nick, there is a maximal intermediate subfield F ⊂ P ⊂ D with dimF P = n. Since
F has a unique (up to isomorphism) extension of degree n, all maximal subfields of D are
isomorphic.

By the Skolem-Noether theorem, any two maximal subfields of D are conjugate. More
precisely, if P, P ′ two maximal subfields with embeddings ι : P ↪→ D, ι′ : P ↪→ D, and we

fix an isomorphism φ : P
∼=−→ P ′ (isomorphism as K-algebras), then by the Skolem-Noether

theorem applied to the homomorphisms ι and ι′ ◦ φ, there exists d ∈ D such that for all
x ∈ P ,

ι′ ◦ φ(x) = d
(
ι(x)

)
d−1

Since ι, ι′ are inclusions, we can write this instead as

φ(x) = dxd−1

That is to say,
P → P ′ x 7→ dxd−1

is an isomorphism, which is what we mean when we say that P, P ′ are conjugate in D. Thus
if P is any one maximal subfield, then all other maximal subfields arise as conjugates dPd−1.
Now, every element of D is contained in some maximal subfield, so we obtain

D× =
⋃

P maximal
subfield

P× =
⋃
d∈D×

dP×d−1

Since D× is a finite group and P× ⊂ D× is a proper subgroup, by our group theory lemma
2.1, this is a contradiction, so no such D exists.

Corollary 2.3. Let F be a finite field. Then Br(F ) = 0.

Proof. Nonzero elements of Br(F ) correspond to equivalence classes of (noncommutative)
finite dimensional central division algebras, but by Proposition 2.2, there are no such division
algebras.
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3 First approximation outline of Br(K) ∼= H2(GK, (K
sep)×)

Our next goal is to describe the isomorphism

Br(K) ∼= H2(Gal(Ksep/K), (Ksep)×)

More generally, for any Galois extension L/K,

Br(L/K) ∼= H2(Gal(L/K), L×)

and the first isomorphism is the case L = Ksep. We won’t have time (or much desire) to go
into all the details, since it involves a lot of them, and the details don’t do much to illustrate
the ideas. We will try to outline the construction of the isomorphism, at least. Here is a
first approximation outline.

1. For a finite Galois extension L/K, construct a group isomorphism

βL/K : Br(L/K)→ H2(Gal(L/K), L×) [A] 7→ [{aσ,τ}]

2. Extend the isomorphism to infinite Galois extensions via an isomorphism of directed
systems.

The hard part is #1, and none of the parts involved is easy. Each of the following steps
takes about a page of detailed work: construction of the map βL/K , showing that what you’ve
constructed is a cocycle, showing βL/K is injective, showing βL/K is surjective, showing that
βL/K is a group homomorphism. This is where we’ll omit a lot of details later.

In contrast, #2 is not so bad, so we can talk about some of it now. Consider an infinite
Galois extension L/K, and let E be the collection of finite Galois intermediate extensions
K ⊂ E ⊂ L. For E1, E2 ∈ E , we have the inflation map

θ1
2 = Inf : H2(Gal(E1/K), E×1 )→ H2(Gal(E2, K), E×2 )

which makes the groups H2(Gal(Ei/K), E×i ) into a directed system with

H2(Gal(L/K), L×) = lim−→
E∈E

H2(Gal(E/K), E×)

By a slight generalization of something Nick proved,

Br(L/K) =
⋃
E∈E

Br(E/K) = lim−→
E∈E

Br(E/K)

with the maps of this directed system just being inclusions

ι12 : Br(E1/K) ↪→ Br(E2/K) [A] 7→ [A]

Thus we have maps in the following square.

Br(E1/K) Br(E2/K)

H2(Gal(E1/K), E×1 ) H2(Gal(E2/K), E×2 )

ι12

βE1/K
∼= βE2/K

∼=

θ12
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If this diagram commutes, then the isomorphisms βE/K are not merely group isomorphisms,
but the collection of them is an isomorphism of directed systems, which induces an isomor-
phism on the direct limit, which is exactly the isomorphism we wanted.

Br(L/K) ∼= H2(Gal(L/K), L×)
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